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I. INTRODUCTION

Calculation of the input impedance of a dipole antenna located
electrically close to a plane dielectric interface has traditionally
involved a Sommerfeld integral formulation. This is well known to be
a time consuming and difficult computational task. A good bibliography
can be found in a book by Banos[l]. A disadvantage of the Sommerfeld
formulation is that the mathematical manipulations involved in obtain-
ing a better approximation or a better integration path seldom have a
clear physical explanation. This means that it is often difficult to
decide what action to take to facilitate the computation. Sommerfeld
solutions for finite length antennas are difficult to program success-
fully and the resulting program is usually lengthy.

This report presents a simple yet exact formulation for the mutual
impedance between two sinusoidal dipole antennas in the presence of a
half space. This formula can be simply evaluated numerically when the
dipoles are immersed in a lossy medium, and can be used in a moment
method solution using sinusoidal bases and Galerkins method[2]. The
resulting program is relatively compact. The mutual impedance is infer-
red (by the Array Scanning Method) from a convenient formula for the
infinite array impedance developed by Munk, et al[3] which contains a
sum of plane waves. The half space is accounted for by including a
plane wave reflection coefficient for each plane wave. The advantages
of this formulation are that it is exact, it is simple to program, and
it has a clear physical interpretation.

The Array Scanning Method formulation is presented in Section II.
Section III discusses the result. The utility of the method is demon-
strated in Section IV by the presentation of numerical results of the
input impedance of dipoles in lossy half spaces. Several different
cases are presented because there are few results of half space calcu-
lations contained in the literature. In Section V an approximation is
made for low frequencies and conducting media which results in a con-
siderable saving in computer time. As an example a moment method solu-
tion for the input impedance for a dipole buried in the earth is pre-
sented. The change in the current distribution as the dipole approaches
to within X/150,000 of the surface is shown.

II. THE MUTUAL IMPEDANCE BETWEEN TWO
SINUSOIDAL DIPOLES IN TERMS
OF PLANE WAVES

Munk, et al[3] have developed a convenient formulation for the free
space mutual impedance between a reference dipole located parallel to an
infinite two dimensional plane array of parallel sinusoidal dipoles.
The formula converges much faster on a computer than does the method in
which the mutual impedances of the individual elements are summed. Re-
ferring to Fig. 1, the mutual impedance between the reference dipole and
the array when both are in a general medium of propagation constant
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ELEMENTS OF z
INFINITE ARRAY

I XI I jp

REFERENCE DIPOLE

AT (X,-d, Z )

Fig. 1. Geometry of reference dipole and infinite array.

' a + jo, and all elements have a sinusoidal distribution of the
Floquet type is

2n c jZs0  jaXst e-YdiCy
(1) z - I P2 () e e

nD o= _  ko = w yCy

where the superscript denotes an array impedance, and

(2) cy 1 + (S2 + s2

is a direction cosine. The other directions cosines cx, c z are given
in Eqs. (47) and (48) of Appendix A. The other terms a.-e
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([costso - coshyZ] 2

(3) P() = [62S+y 2]sinh2yt

0

(4) so  : sine + 0

kox(5) s¢ = sin¢ + DX

n / /7T-is the characteristic impedance of the medium, and e and
0 are the phase differences between the current on adjacent array ele-
ments in the z and x directions respectively. The significance of the
summation indices will be clarified in the following section.

By applying simple Fourier theory during the derivation of Eq. (1),
we instedd obtain an expression for the mutual impedance between the
reference dipole and a single array element centered at the origin of
the coordinate system shown in Fig. 1:

(6) ZM = ir/ZD fT/SDx d(sino)d(sine)
-T/ODZ -/BD x

The details of the derivation are given in Appendix A. The deri-
vation of Eq. (1) is implicit in Appendix A.

III. INTERPRETATION OF THE RESULT

Notice that in Eq. (6) that the integration is done with respect to
the variables sine and sine which by Eqs. (2), (47) and (48) control the
direction of propagation of the plane waves emitted by the infinite array
(changing the phase of the current on the elements to control the direc-
tion of radiation is called scanning). Therefore implicit ii Eq. (6)
is a plane wave expansion of the spherical wave field emitted by a single
dipole, and the technique is called the Array Scanning Method (ASM).
The advantage gained in this approach is that a clear physical inter-
pretation is obtained, viz. that the plane waves are emitted by an in-
finite array in which the wanted antenna is a member element.

It is instructive to examine the behaviour of the direction cosine
cv . Figure 2 shows c for an array having a spacing D = 3.5X with all
elements driven with qual phase (sine = sine = 0), both for free space,

3
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Fig. 2. Example of direction cosine c for an array in free space
and in a lossy medium. For te array, Dz=3.5A, sin,
sine= Ko=O. The frequency is 300 MHz.
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and for a los sy medium of constitutive parameters E:r=l, 0 = .001 mhos/
meter. The values are plotted for ko = 0.

For no loss, when no _. 3, cyis real. This means that the array
emits propagating waves in directions specified by the direction cosines
c, cz . Since ko : 0, cx = 0 so that the direction of radiation is
away in the y-z plane. The radiation associated with no = 0 occurs in
a directio;i specified by the element phases, sine and sint. If sine
sing = 0, the array radiates broadside. This is the principal direction
or main lobe. For no = 1, 2 jr 3, the radiation occurs in other direc-
tions; these are the grating lobes.

When no > 3, c becomes imaginary, so that the plane waves in Eq.
(1) are non-propagaTing or evanescent waves. The imaginary direction
cosines specify the directions of propagation into imaginary space. The
evanescent waves decay rapidly as the spacing dl from the array increases,
and as n increases. I' is this rapid decay which makes Eq. (1) con-0.

verge rapidly.

When the medium is lossy, cy is complex and lies on the curve shown
in Fig. 2. Thus the propagating waves are attenuated, and there are no
purely evanescent waves for an infinite array in a lossy medium. How-
ever, when no > 3 the attenuation factor becomes so large that in prac-
tice the waves decay in the same way as in the lossless case.

In Eq. (6) it is convenient to choose the array spacings DX  =
0.5x, so that the limits of integration become -1 and +1. Figure 3
depicts the region of integration for the half-wavelength spaced array
in free space. For free space this diagram is known as the direction
cosine plane[4]. It is seen that Eq. (6) corresponds to scanning the
principal beam of the array over a cell consisting of all r-al space
(thdt within the circle) and part of imaginary space. Further, be-
cause of the form of the summation in Eq. (1) the integration is effec-
tively being carrier out over all space (in Fig. 3, as the main lobe
scans the pictured square cell, the evanescent modes are scanning an
infinite number 2f identical square cells covering all space). Notice
that when cx + cy > cv is imaginary and the array does not radiate.
Under this condi ion ihe mi'tual impedance is purely reactive. Notice
also that when c., + c = 1, cy = 0 and the mutual impedance is infinite.
It is this "infinite ridge" on the real-imaginary space boundary which
make,; Eq. (6) difficult to evaluate numerically for a free space medium.
However numerical experiments show that the integral does converge when
the "pole" is approached. This verifies a conclusion reached on purely
physical grounds: if the integral did not converge the mutual impedance
between two dipoles would be infinite regardless of spacing. However
when the medium is lossy, cy is never zero, and it is then straight-
forward to evaludte Eq. (6) numerically. Figure 4 gives an c:;.mple of
the variatioai of the mutual impedance between the reference element and
an array in a lossy medium as the scan angles e and t are varied. The
resistance and reactance (shown separately in Fig. 4) are plotted for
the first quadrant of the square cell depicted in Fig. 3. The position
of the ridge is shown clearly.
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IV. THE IMPEDANCE OF DIPOLES IN
A LOSSY HALF-SPACE

When the separaltion d of the reference dipole and the array is set
equal to the dipole radius a we obtain the self impedance[5]. Next,
the mutual impedance of an image antenna in a plane interface can be
computed simply by including a plane wave reflection coefficient for
each plane wave in Eq. (1). The input impedance of a sinusoidal dipole
parallel to a plane interface is then given by

(7) Zin = ZM(a) + rn ,k ZM(2d )
00

The geometry is shown in Fig. 5. rn k is an effective plane wave
reflection coefficient (i.e., including dipole polarization decoupling
and surface waves when they exist) for an array of z directed dipoles
parallel to a plane interface. It is given by [3]

r 
J

C 2

(8) rnok (l-cz) 2 (l-cy2 ) [yz 1( _ - (1 -C~y) +(c24) cy

2y 2~ J(-cy)
2 Er+ C x

Cy + -i (lc) 2Cy - cy

where c , c and c, are the direction cosines of the incident plane
wave. c ad a~e the complex dielectric constants of the medium
containing the antenna and the half space respectively, and are given
by

(9) C' - - jlW

(=) 2 - 1
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Fig. 5. Geometry of dipole parallel to a plane interface.

The model of Eq. (7) obtained using a sinusoidal dipole represents a
two segment moment method solution using the sinusoidal reaction technique
[2]. Hence Eq. (7) can be used in multisegment moment method solutions
using piecewise sinusoidal expansion dipoles and Galerkiirs method.

To demonstrate the utility of the ASM several examples of the in.-
put impedance of a 0.1 m long, 0.001 m radius sinusoidal dipole parallel
to plane interfaces have been computed at a frequency of 300 MHz. All
media are lossy dielectrics (a > f) at 300 MHz. In computing these r_-
sults the displacements X and Z were zero, and advantage was taken of
the symmetry of Eq. (6) about the sino and sine axes, i.e., integration
need only be done for positive sine and sine. The integration was done
by the trapezoidal rLle, and the required number of integration steps N
along each axis, and the required convergence accuracy for the series
were determined by numerical experiment. This involved comparing the
mutual impedance compited using Eq. (6) to those computed by the induced
emf method using clos forn expressions for the exponential integrals.

For a frequency )f 300 MHz, the following values given in Table I
consistently gave accurasies better than 2%. A reduction in the con-
vergence accuracy to 10" gave an accuracy of about 5%.

A 9
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TABLE I

SUGGESTED VALUES FOR N AND CONVERGENCE ACCURACY
AT 300 MHz. VALUES ARE FOR TRAPEZOIDAL INTEGRATION

a d N Convergence
accuracy

.001 < 0.2x is 10-4

.01 > 0.2x 15 10-4

< 0.2x 10 10- 4

0.1 all d 10 10 4

1.0 all d 6 1O 4

Since Eq. (1) converges more slowly as the distance d becomes small,
the computing efficiency was further improved by computing the self
impedance of the dipole (the first term in Eq. (7)) by the induced emf
method. The plane wave expansion was used only to calculate the mutual
impedance of the image in the interface.

Figures 6 and 7 show the input impedance of the dipole when it

approaches an interface which has a different permittivity. Results
are presented for the dipole on both sides of the interface. Figure 6
shows that when the conductivity a = .001 mhos/m there is little change
in the input resistance, but the reactance is lower when the dipole is
in the medium of higher permittivity. This occurs because the shorter
wavelength in medium I means that the dipole is electrically longer and
therefore is nearer to resonance. The smooth reactance change as the
dipole approaches the interface occurs because of the influence of the
nearby half-space on the wavelength as the dipole approaches the inter-
face. When the conductivity of both media is increased to 0.01 mhos/m,
we observe in Fig. 7 that the input resistance has increased significantly.
This occurs because the characteristic impedance n for the lossier medidm
has a larger imaginary part. Thus the evanescent modes summed in Eq. (1),
which affect only the reactance when the medium is lossless (n real),
now contribute significantly to the resistance because of the complex
n multiplier in Eq. (1).

Figures 8-10 show the input impedance when the dipole approaches
the interface of a medium of different conductivity. When the conduc-
tivity is low, as in Fig. 8, there is little change in the wavelength
and in the real part of n, so that there is little change in the dipole
reactance. The relatively large change in the imaginary part of n causes
the observed change in the input resistance. In Fig. 9, when the con-
ductivity is increased so that there is a significant wavelength change

10
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between the media, a significant reactance change is observed. An inter-
esting observation is that practically all the resistance change occurs
when the dipole is in the medium with the lowest conductivity. This
indicates that the medium of lowest characteristic impedance absorbs most
of the power supplied to the dipole when the dipole is close to the inter-
face but is located in an adjacent medium of higher characteristic imped-
ance. lhis effect is even more pronounced in Fig. 10 where the two media
differ in conductivity by two orders of magnitude.

Because of their simplicity dipole antennas make good subterranean
radar antennas[6]. Consequently the characteristics of dipoles buried
in the ground near the earth-air interface are of interest. Figure 11
shows how the input impedance of a 0.001 m radi', 0.1 m long dipole
varies with different burial depths in earth having constitutive para-
meters cr = 4, o = .01 mhos/m. Three curves are shown. One is a direct
application of Eq. (7). For comparison results obtained from a four
segment moment method using sinusoidal bases and Galerkins method with
Eq. (7) to obtain the impedance matrix elements are also presented.
Note that for the electrically short dipole considered good accuracy is
obtained with a two segment solution. This is further confirmed by the
eight segment solution by Richmond[7] for a homogeneous medium (i.e.,

Also presented in Fig. 11 is a comparison with a Sommerfeld inte-
gral solution by program WFLLL2B[8]. It is emphasized that with this
program 21 segments were required to obtain the results presented, which
is equivalent of 105 segments per wavelength in the earth. In comparison
it is seen thai good results are obtained for this antenna (which is 0.2X
long in the earth) by using only two segments and the ASM. It is noted
also that with WFLLL2B and 21 segments there is still some difficulty in
matching the result for a homogeneous medium with those for the interface.
Although the reactances obtained by the two methods differ slightly, the
results are consistent.

The behaviour of the impedance in Fig. 11 is consistent with that
observed for a dipole approaching a medium of lower conductivity shown
in Figs. 9 and 10. Note that results could not be computed for the
dipole in air with the interface present. A moment method solution[7]
using 8 segments in free space yielded a value of 1.69 - j1036 for the
input impedance. Note that the effect of conductive earth contact is
to greatly increase the input resistance. As noted before, the react-
ance change is primarily due to the change in the electrical length of
the antenna as the interface is approached. The resistance is largely
unaffected because of the power input to the antenna being absorbed by
the earth.

The computation time is observed to vary approximately as d- l . Con-
sequently the results for small d are relatively time consuming. Table
II shows the computer time required to calculate the results shown in
Fig. 6 for two convergence accuracies. The computer used was a Datacraft
6024, but the times have been presented for an IBM 370/168 computer by
running one example and converting all times by the speed ratio thus
obtained.
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Fig. 11. Input impedance of O.1m dipole buried in a
lossy half space (earth).
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TABLE I1

IBM 370/168 COMPUTER TIME REQUIRED TO COMPUTE
THE RESULTS PRESENTED IN Fig. 6

distance from Seconds of CPU Seconds of CPU
interface d time for time for

convergence = 10-3 convergence = 1O- 4

.5 m .85 0.87

.25 i l .05 1 .23

.1 m 3.37 4.27

.05 m 8.41 12.4

.01 m 28.6 46.3

.005 m 45.6 103

.001 m 117 477
jA

For d = .001 m, the impedance calculated with a convergence accur-
acy of 10-3 was 4,697 - jl48.4i. When the convergence accuracy was in-
creased to 10-4 the calculated impedance was 4.285 - j143.8 It is
doubtful if the improvement in accuracy justifies the large increase in
computer time. Large amounts of computer time are required when d is
less than about X/1000.

In Table III a CPU time romparison is made between the ASM and
the Sommerfeld program WFLLL2B[8]. Since the ASM is similar to a Sormner-
feld approach[3] no dramatic differences in CPU time are observed. It
is apparent however that far fewer segments are needed with the ASM
because of the superiority of the piecewise sinusoidal current expansion
for dire antennas. It should also be nuted that the pilot subroutine
used trapezoidal integration. A significant improvement is likely if a
more efficient integration procedure is used.

It is also worth pointing out that our pilot subroutine which com-
putes the values of the integrand contains only 65 FORTRAN statements.
A further 13 statements are added to calculate rno,k o , and the integra-
tion subroutine contains 70 statements.
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TABLE III

IBM 370/168 CPU TIME IN SECONDS REQUIRtD TO
COMPUTE THE RESULTS PRESENTED IN Fig. 11

d Array scanning method' Program
(meters) WF-ILL-2B

4 segments 2 segments 21 segments

.25 m 5.6 1.2 68

1 m 17.5 4.2 59

.05 m 56.3 12.3 79

.01 m 341 45 105

.005 m 526 101 136

V. THE IMPEDANCE OF DIPOLES IN A
CONDUCTING HALF-SPACE

Subterranean electromagnetic pulse radar systems for probing many
hundreds of meters into the earth must necessarily operate at low fre-
quencies[g]. Physically long antennas lying on the surface or buried
only a few centimeters from the surface are required. This close
electrical spacing to the surface threatens the viability of this method
for calculating the input impedance cf these antennas. Fortunately
advantage can be taken of the low frequency characteristics of the earth.

At low frequencies where the earth is classed as a conductor (a =
6), the higher attenuation constant assists convergence (rate of con-
vergence for large no and k. in Eq. (1) depends upon the real part of
yc , which varies in a rather complicated way with frequency and con-
sttutive parameters). Further economies in computer time are possible
at low frequencies by reducing the number of integration steps N. This
is due to the increased attenuation between the array elements as the
wavelength becomes large (which means that the array spacing, which we
set at O.5X in our numerical calculations, becomes large).

In this section calculations of the input impedance of a 1000 m
dipole in earth of constitutive parameters er = 4, o = .01 mhos/meter
are presented for a frequency of 100 Hz. It was possible to calculate
results with the antenna as close as 2 cm to the interface with reason-
able expenditure of computer time (2 cm is about 1/150,000 of a wave-
length in the earth). For this example good results were obtained when
the dipole was within O.lX (P 300m) of the interface by evaluating
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only the integ-and of Eq. (6) (i.e., N = 0) with sine = sin = 0. This
mean, that the mutual impedance of the array is almost identical to the
mutual impedance of a single element. This occurs because at 100 Hz
the array is spaced 4/2 : 1581 meters between elements, and the high
loss means that only the fields of the center element are significant
providing the reference dipole is located near the center element.

Figurc 12 plots the error in the mutual impedance of two parallel
1000m sinusoidal dipoles in an infinite medium of 1r 4, a = .01 mhos/
meter when calculated using this approximation. The induced emf method
wis used as a reference. The error is seen to increase as the separation
of the dipoles is reduced. The error also increases when the separation
increases beyond 300m: this occurs because the spacing between the refer-
ence dipole and the adjacent-to-center elements of the array is less
than an order of magnitude smaller than the spacing of the reference
dipole and the center element. This error can be reduced by performing
the integration in Eq. (6), i.e., N > 0. However the integration was
observed to have little effect on the error at close spacings, supporting
the assumption that the mutual impedance iz dominated by the fields of
the center element of the array. The computer time required is indicated
on Fig. 12: the saving is seen to be roughly 50x by comparison with
Table II for similar electrical spacings.

Using the array approximation, the input impedance of the lO00m
dipole buried in the earth was calculated. The results are shown in
Fig. 13. The convergence accuracy chosen was 0.5 x l- 3 . Since the
induced emf method, which is used to calculate the self impedance, is
assumed accurate, and Fig. 1? gives the expected accuracy of the mutual
impedance of the image in the interface assuming perfect reflection, the
overall accuracy of the calculations presented in Fig. 13 can be estimated.
The error in the reactance is estimated to be less that 1% for all d, and
the error in the input resistance is estimated to be less than 2% when
d = Im.

When d = 0.1m, the error in the resistance exceeds 8%. It is inter-
esting to note that when d < O.lm thc error in the mutual impedance com-
putations acts to make the mutual (and hence self) impedance constant.
This effect was also noticed when preparing Fig. 12, hence it is not a
property of the half-space (i.e., although the error increases as the spac-
ing decreases, the mutual impedance calculated by the ASM is observed to
become independent of spacing).

The economies in computer time (indicated by the CPU times included
in Fig. 13) obtained by the array approximation described in this section
make this technique useful for more accurate analysis of dipoles by the
moment method. As an example, the input impedance of the lO00m dipole
obtained from a four segment (equal lengths) moment method solution using
sinusoi~16 bases and Galerkins method is presented in Fig. 14. Note the
improvement in accuracy for small d, and the appearance of the "kink" near
d = -, commonly observed in the lossy djelectric results. Results for a
higher series convergence accuracy (lo- ) are given in Fig. 15. As concluded
in the previous section, the improvement in accuracy does not warrant the
large increase in computer time.
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MEDIUM I MEDIUM 2
(EARTH) (AIR)

Er- 4  EraI d =OD
0.6- 0:0.0I mho/m 0 da300m(C.3)

X z 3162 m X - 3x 10 m d:O0 m (0.5)
77 0.2+O. n 17 • a 377n / d60m( 1,")

0.5 - dz4Or( L5.

(, FREQUENCY • I00Hz #/;... . -

10.4- DIPOLE RAOIUSsO.OOZm dtlr(5I
dSm (7)

Q3 d-2M (II)
z0.3 d (14)
< d 20.5n( 21)

0.2 d 0.1 m (25),%"z0.2 -

010 1 I I I I I I I
0 Oi 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0,9 ID 1.1 1.2

RESISTANCE (OHMS)

Fig. 13. Input impedance of 1000m long sinusoidal dipole
buried in a conducting half space (earth). The
computation times in seconds for an IBM 370/168
computer are given in parenthesis.

It is interesting to note from Fig. 15 that when the dipole approaches
the air interface from the conducting medium that the only significant
change occurs in the input resistance. The results presented indicace
that if the dipole was brought from d = - into close contact with the
interface then the input resistance would approximately double. This
confirms the simple physical argument: there is only one conducting half
space to shunt the antenna so that the input resistance is doubled.
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Er: E r(EARTH) (AIR)

a- 0.0mhos/m (r.0d=
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0.1-

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 .2

RESISTANCE (OHMS)

Fig. 14. Four segment sinusoidal Galerkin moment method solutien
for input impedance of lO00m long dipole buried in a
conducting half-space earth). The series convergence
accuracy was 0.5 x 10 . IBM 370/168 computation times
in seconds are given in parenthesis.
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O.Oz 0.01 mhoa/m od 300m(O.2)
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1.0 1.1 1.2
RESISTANCE (OHMS)

Fig. 15. Four segment sinusoidal Galerkin moment method solution

for input impedance of 1000m long dipole buried in a
conducting half pace (earth). The series convergence
accuracy was 10 "4. IBM 370/168 computation times in
seconds art given in parenthesis.
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biMultisegment moment method solutions with small segments are more
accurate than simple two segment solutions because the current distri-
bution is more accurately represented. With a two segment solution it
is assumed that the current distribution remains unchanged as the dipole
approaches the interface. The accuracy of this assumption can be gauged
from the four segment solution. Table IV shows the current relative to
the terminal current at a point halfway between the center terminals and
the dipole tip as the dipole aporoaches the interface. If the medium
containing the dipole was lossless, the magnitude of the current would
have been slightly greater than 0.5 (since the sinusoidal shape of the
distribution begins to show whren the antenna is 0.3X long) and the phase
near zero. The attenuation of the medium acts to reduce the magnitude
of the current along the antenna, and causes the negative phase angle.
The physical explanation is that the reflection of the input wave from
the tips of the antenna is attenuated, and when summed with the outgoing
wave results in a current amplitude with a negative phase angle. Notice
in Table IV that as the antenna conies close to the surface the immnediate
environment of the antenna becomes less lossy, thereby reducing the phase
and increasing the magnitude of the current at the midpoint of each side
of the antenna.

TABLE IV

AMPLITUDE OF THE CURRENT RELATIVE TO THE TERMINAL
CURRE0T 25om FROM TVE TERMINALS OF A CENTER FED

lO00m DIPOLE IN CONDUCTING EARTH PARALLEL
TO AN AIR INTERFACE

distance from Relative amplitude
interface d of current
(metres)

300 0.4701.15o
100 0.4 6,_
60 0.4631-1.5
40 0.464/-15.3
20 0.4641:.64,*_°
10 0.465/j13.9
5 0.4671-13-3
2 O.470L.2. oA
1 0°.471/1.9

0.5 0.473/011.4
0.1 0.476/-1.6,
0.05 0.476/l1j °

0.02 0.4771-10-3

- 25



VI CONCLUSIONS

A simple alternative formulation of the classical Sommerfeld pro-
blem called the Array Scanning Method (ASM) has been applied to linear
sinusoidal antennas in a lossy half space. The advantage of the method

are:

1. It is simple to program and the resulting program occupies
significantly less storage than does a typical Sommerfeld
program.

2. The formulation has a clear physical interpretation which
greatly fdcilitates its use.

It is shown that at low frequencies, the input resistance of a
dipole buried in the earth approximately doubles when it is moved from
large depths to a position near the interface. This confirms the simple
physical argument: there is only one conducting half-space to shunt the
antenna so that the resistance is doubled.

Although the numerical evaluation of the integral is not as
straightforward when the antenna is in free space, the method has been
shown to converge in this case, and with a suitable integration pro-
cedure could be applied to the analysis of linear antennas above the
earth.

26

n n I i--i-- -"i--n -i- - - -- -n n n n n n ! a



REFERENCES

[1] A. Banos, Dipole Radiation in the Presence of a Conducting Half-
Space, New York: Permagon Press, 1966.

[2] J.H. Richmond, "Radiation and Scattering by Thin-Wire Structures
in the Complex Frequency Domain," National Aeronautics and Space
Administration, NASA CR-2396, May 1974.

[3] B.A. Munk, R.D. Fulton and R.J. Luebbers, "Plane Wave Expansion
for Arrays in Presence of Dielectric Slabs," Report AFAL-TR-76-53,
prepared by the Ohio State University ElectroScience Laboratory
for Air Force Avionics Laboratory, Wright-Patterson Air Force
Base, Ohio.

[4] R.C. Hansen, Microwave Scanning Antennas, New York: Academic, 1966.

[5] E.C. Jordan and K.G. Balman, Electromagnetic Waves and Radiating
Systems, second edition. New Jersey: Prentice HalT, 1966.

[6] D.L. Moffatt, R.J. Puskar and L. Peters, Jr., "Electromagnetic
Pulse Sounding for Geological Surveying with Application in Rock
Mechanics and the Rapid Excavation Program, Report 3208-2, September
1973, The Ohio State University ElectroScience Laboratory, Depart-
ment of Electrical Engineering; prepared under Contract H0230009
for Bureau of Mines.

[7] J.H. Richmond, "Radiation and Scattering by Thin-Wire Structures
in a Homogeneous Conducting Medium," IEEE Trans. Antennas Propagat.,
vol. AP-22, p. 365, March 1974.

[8] D.L. Lager and R. Jeff Lytle, "Fortran Subroutines for the Numerical
Evaluation of Somnerfeld Integrals unter anderem," Report UCRL-51821,
Lawrence Livermore Laboratory, University of California, Livermore.

[9] R. Gabillard, P. Degauque and J.R. Wait, "Subsurface Electromagnetic
Telecommunication - A Review," IEEE Trans. Comm. Tech., vol. COM-19,
pp. 1217-1228, December 1971.

27



APPENDIX A

MUTUAL IMPEDANCE OF PARALLEL SINUSOIDAL DIPOLES
BY THE ARRAY SCANNING MFTHOD

Consider a reference diDole located parallel to an infinite plane
array in a lossy medium with -. and a, as shown in Fig. 1. The displace-
ments from the x axis are X arid Z. Following Munk, et al[3] the current
on the element in the kth column and nth row of *ie array is given by

jenDxsine jilkDzsini
(11) Ikn =I e e .

where I = sinhy(t-izI)/sinhyz i the current on the centre element,

= +j is the propagation constant, and e and are phase differences
in the current on adjacent elements in the z direction and x direction
respectively.

The mutual impedance between the reference dipole and the array Za can
be obtained by summing the mutual impedances of each element of te array:

0 k jBnDxsine j~kDzsin(12) ZM - LZ -  I: -Zo,kna = e

Z is the mutual impedance between the reference dipole and the knth
e'? ent of the array, and is given by[5]

(13) Zo,kn 4 siy, [ erl + - 2 coshy r

o~n 4Tsinh2yz r I r2r1

sinhy(-I zl)dz

where q is the characteristic impedance of the medium, and

(14) r2 = (kDx  X)2 + d + (nDz - Z - z

(15) r= (kDx - X)2 + d + (nDz - Z - z + 2

(16) r2 = (kDx - X)2 + d2 + (nDz - Z - z_)2

as shown ir. Fig. 16.
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X

Fig. 16. The geometry involving the reference dipole at
(X,-dZ) and the kn'th dipole of the array.

Equation (12) can be written as

j3kDzsin¢
(17) z Zz e

k= -(:

where

(18) I [e - f L- r2 ro
47isinh 2 y n ... 1 2o

jBnDz sine
e sinh-y(t-lzl)dz

Reversing the order xf integ-ation and summation in Eq. (18) gives
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(19) __ -Yrl Yr 2 r
(19) _ - jsinhy(i-Iz+) 2 r] + coshY

4Tsinh 2-Yz - n= -  rl r2  r.

jfnDzsinoe dz

By combining the Poisson sum formula

W ~jnwt= w T
(20) F(nw)e = T Z f(t+noT) ; T

nno--o 0

and the frequency shift theorem

Fourier JWt
(21) F(,,-W) - -- f(t)e

where W is a radian frequency shift,we obtain

jnwt TjW(t+noT)

(22) 7 F(w-W) e T 7 e f(t+noT)
fnL-- no=-w

The summation in Eq. (18) can be done by applying Eq. (22) with
the Fourier Transform pair

i yja2+(wUl Fourier jwl t

(23) e . e •- ( 2 )  2 -2

Sa2 +(-wl) 2  2 o

and by making the following substitutions

(24) w = Dz

(25) t = a sine

Z-Z for r 1

(26) W1 Z for r 0
Lz+k for r2
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Im
( 2 7 ) W = Z kX 2 2

(28) a2  (kOx - + d2

(29) T = 2n
Dz

Equation (18) then becomes

(30) -, sinhy(z-Izl) [e (2cosats0 - 2coshyt)2Dzsinh2y9 -n no-

2 Ho2) (a ' 2_ 2 2S2)

where s. is defined in Eq. (5).

After doing the integration we get

(3): 0 H2 a-y 2 -rI
2

S ]
z~zD z n o - ° 0

where P2(6) is defined in Eq. (3).

ZI is the mutual impedance between the reference dipole and an in-
finite column of dipoles spaced Dz metres apart in the z direction. The
mutual impedance between the centre dipole only and the reference dipole
can now be inferred from the column array impedance Eq. (31) by using
the Fourier series for a periodic function:

(32) T Z g(t+mT) = G(nw) ej n wt

(33) where G(nw) = T /2  ) ejnwt dt
f-T/2

Combining Eqs. (32), (33) and (22), and setting n=O, we obtain

= T/2 e jW(t-+noT) tnTNd

(34) F(-W) 0T/2 not-T f o t

- n
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Making the substitutions given in Eqs. (24) - (29), we obtain

(35) Zoo Z1 d(sine)

Zoo 0is the mutual impedance between the reference dipole, and the
centre element of the z oriented column of dipoles located at z=O. Con-
sider Eq. (35) when the element spacing 02 = ./2. The integration limits
then correspond to -r/2 < e < r/2. Physically Eq. (35) means that the
phase of the current on the elements adjacent to the centre element is
varied by r. radians, the next elements by 2r radians, and so on, so that
when the integration is done their mean field is zero at the reference
dipole. Thus all elements but the centre element are "phased out". A
time-frequency analogy is that the d.c. term is the average value of the
time signal.

By substituting Eq. (35) into the expression for the mutual imped-
ance of the infinite array Eq. (12) we obtain the mutual impedance of
the reference dipole and an infinite number of dipoles spaced along the
x axis Zo,ko

(36) Z o,ko =::f a f-p2BDe

(-2) J TFo 2nj0 kDzsin$

H0  a .- :e d(sinu)) e

Reverse the order of summation and integration to obtain

o krT/Bo, ? jBZs c (2)
(37) Zo-ko I p20z H0  (al 6

Z .r/aDz no~- k

I j~k0zsin¢

e d(sine)

The k summation can be summed by again using Eq. (22) with the
Fourier transform pair

Fourier H(2)( - - ] 2 +d2  )
(38) e

IIJ[_-y2 - 2 t2
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The necessary substitutions are

(39) T = 2v

(40) t = sin,

(41) W= Dx

(42) W = X,

so that

(43) p20ojeJ ,jZs 0 jIXs
(43) Zo ,ko DxDz -1' / = _ .1C ....

e . d(sine)
I _2,12 2+sz

*- - (si:s)

'yjre S is given in Eq. (5).

By again applying Eq. (34) with Eqs. (39) (42) we eliminate all but
the centre element. The result is

JZ x zM d(sinfld(sine)
-B z  -/ Dx

where

-jd 2 2 ( 2 S2)2 j8Zs6 j Xs e - o s6

(45) ZM - P p2(9)e Z e eD D z n o - k o = l Y 2 ? 2 ( S o + S2

Equation (45) is the mutual impedance between the reference dipule and
an infinite array, and Eq. (44) shows how the mutual impedance of a
single element can be inferred from the array impedance by phasing out
all elements but the centre element.
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The important feature of Eq. (45) is that it contains a sum of plane

waves. Recognizing this it car be written as
2 jc1 Zs0  j, eXs y

(46) ZM 2 2 p2 (o)e e ¢- l~~ k~c~ycy
0• Y

where the direction cosine c for the plane waves emitted by the array

is defined in Eq. (2). y

To obtain Eq. (46) it was necessary to use ,--= -j so that the

waves emitted by the array attenuate as they propagate away from the

array. In Eq. (2) the required root is the principAl root. The other

direction cosines are

(47) cx  = _ 
i

(48 ) "z -
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